WBL DETONATION WAVE PROPAGATION FOR EDC35 AND EDC37
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The WBL (Witham — Bdzil — Lambourn) detonation model'?? is a computationally
efficient way of predicting the motion of a detonation wave in explosives without the
need to resolve the reaction zone in a continuum mechanics calculation. Level set
methods have been employed to model experiments, where they have been found to be
more convenient than schemes which move the detonation wave as an explicitly
represented surface. Measurements have been made of the angle which detonation
waves in EDC37 make with inert materials. These angles are required as boundary
conditions for the WBL model and to test theoretical models of the structure of the
reaction zone. Experiments of different sizes have been fired using EDC37 and the
insensitive high explosive EDC35, with measurements of the shape of the detonation
wave at the end of each charge, allowing relations between the speed and curvature of

the detonation wave to be found in each explosive.

INTRODUCTION

Models such as the WBL act as a bridge between
Chapman-Jouguet  detonation and reactive flow
calculations. They allow some non-ideal behaviour
without requiring a finely resolved treatment incorporating
explosive reaction. Considered as an iterative
improvement, they posses fewer free parameters than a
full reactive flow model and hence can be characterised by
fewer experimental measurements. The WBL model is
effectively a correction to the Huygen’s wave propagation
method often used in hydrocodes.

A new analytic method for calculating detonation wave
propagation with the WBL model is presented. This is
based on field evolution of the burn characteristics of the
explosive, allowing more versatile modelling of complex
shapes and burn mechanisms.

To corroborate the WBL model further, experiments
have been fielded to find data for the model. These
involved cylinders and slabs of the TATB-based
insensitive high explosive (IHE) EDC35 and HMX-based
EDC37, together with boundary angle trials on EDC37.
The results of these experiments are presented.

WBL DETONATION

The WBL model describes the propagation of the
leading shock of a detonation wave. The local speed, D, at
which any portion of the wave propagates along its normal
direction, is a function of its geometry, in particular the
local mean wave curvature K. A key piece of information
required to characterise the detonation behaviour of an
explosive is the D(K) relation.
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Inert materials exert a ‘dragging’ effect on the
detonation wave. This is described by prescribing a
preferred angle, @g, which the wave makes with inert
materials. It is postulated that this angle can be predicted,
given an understanding of certain explosive and inert
properties, or measured directly from wave shape
experiments. An additional boundary condition is the
angle @c at which a detonation wave (meeting an inert
boundary from an initially low angle of incidence) can
first be influenced by the boundary — the causal angle.

‘LEVEL-SET’ TECHNIQUES FOR PROPAGATING
DETONATION WAVES

The propagation of waves as described by the WBL
model may be computed using a wave-tracking approach,
i.e. approximating the wave as a finite set of Lagrangian
marker particles whose subsequent movement are
governed by the WBL equations of motion. This technique
has been seen to be accurate and efficient for simple
problems such as single waves propagating through slabs
or cylinders of high explosive. In general, however, this
solution method did not readily extend to handle
increasing complex problems. In particular, extensive
additional coding was required to locate and handle wave
collisions, complicated charge boundary interactions and
corner turning.

‘Level-set’ methods®, or Propagation of Surfaces under
Curvature (PSC), offer an alternative approach for
calculating wave propagation — one which extends easily
to accommodate those more convoluted modelling
problems mentioned above. This technique determines
wave motion by relating the wave front to an isosurface,
V(1) = C, of some evolving scalar function, v, defined
over all space, r, and time, ¢.




In order for a wave front, propagating with curvature
dependent speed D(K)*°, to remain coincident with a
defined isosurface, the field must evolve according to the
equation:
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Curvature may be computed from the divergence of the
wave outward normals as follows:
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In our work, the wave front is taken to be the y=0
isosurface, with y>0 in the burnt explosive region behind
the wave and w<0 in the still unburned explosive. The
wave normal is thus obtained from
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First generation 2D and 3D schemes were devised
which predict wave propagation by calculating the
evolution of a field specified on a Cartesian mesh. In these
implementations, the field values, y, were defined at node
points with the vectors Vi and n computed at cell centres.
Time integration was performed using a forward time
upwinding scheme.
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Cells through which the charge boundary passes are
defined as boundary cells; each boundary cell has an
associated vector defining the charge surface outward
normal. User defined boundary conditions are applied in
these cells by rotating x until it is consistent with the
prescribed values of ¢g and @c.

These initial implementations demonstrated the
viability of the method and underlined two of its major
strengths: the implicit handling of multiple wave collisions
and the ease with which the method extends from two to
three dimensions. Nevertheless, the Cartesian approach
had shortcomings: curved and irregular shaped charge
boundaries could only be represented approximately and
computational effort was often wasted computing field
evolution in external inert regions.

A subsequent second generation of schemes
generalised the algorithms to allow wave propagation to
be computed on arbitrary meshes - in particular, meshes
which exactly fitted the explosive’s form. In these
schemes, the discretisation was reversed: the y field was
defined at the cell centres and Vy computed at (internal)
node points by fitting planes (hyper-planes in 3D) to the

surrounding y values. A predictor-corrector scheme was
used for the time integration to give increased accuracy.

Vy was evaluated at boundary (exterior) nodes by
simply copying the vector from a designated ‘nearest
interior node’. Boundary conditions were applied as in the
Cartesian schemes simply by rotating the wave normal, z,
so as to achieve consistency with the supplied values of @q
and ¢c again.

The rotation of the wave normals at the boundary
results in an increase in curvature and subsequent decrease
in wave speed - the boundary effectively exerts a ‘drag’ on
the wave. An example of this is seen in Figure 1 which
shows wave shapes taken at 0.2us intervals from a
calculation (performed using the 2D arbitrary mesh
scheme) of an initially planar wave propagating along a
cylinder of explosive.
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FIGURE 1. DEVELOPMENT OF A CURVED WAVE
FRONT FROM A PLANE INITIATION USING
LEVEL SET (PSC) METHODS

A linear D(K) relation was used:
D = Dgi(1- 4K) @

where D,;and 4 were taken to be 7.818mm/us and 0.5mm
respectively. Boundary angles of @a=¢c=49.9° were
applied as constraints along the rod’s surface. As is seen,
the effect of the drag at the boundary propagates inward
and the initially flat wave becomes increasingly curved as
it assumes a steady shape.

It can be shown that for a wave propagating subject to a
linear D(K) relation along a cylinder of explosive of radius



R, the steady state (in terms of diffusion) wave shape is
well approximated by the following ratio of zeroth-order
Bessel functions:
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and where D( is the phase speed of the wave and is
dependent on the applied boundary constraints. Applying
Equation 5 to a Smm radius cylinder problem, we found
that the @a=@c=49.9° boundary conditions corresponded
to a phase speed of 7.643mm/us. This compares well with
a steady wave phase speed of 7.645mm/ps observed in the
calculation.

The success of the calculation — and the general
suitability of the technique — is further demonstrated by
the close match between the calculated steady wave shape
and the shape given by Equation 5, as seen in Figure 2. A
comparison with EDC37 can be seen later in the paper
(Figure 10).
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FIGURE 2. ANALYTIC SOLUTION AND LEVEL-
SET PREDICTION FOR A STEADY WAVE

BOUNDARY ANGLES

It has been postulated that the ‘preferred angle’, ¢a,
between a detonation wave and a high acoustic impedance
(pc) inert material is where no reflected wave (NRW) is
produced at the intersection point. Predicting @ in this
way requires knowledge of the equation of state of the
shocked explosive, which is difficult to obtain

experimentally at detonation pressures. Values for ¢g
were predicted for detonation waves in EDC37 alongside a
variety of inert materials and slab experiments fired to
compare the findings.

The causal angle, ¢c, at which a detonation wave can
first be influenced by an inert material, is approximately
equal to the angle at which information at the local sound
speed sweeps across the wave.
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FIGURE 3. CAUSAL ANGLE CALCULATION

From Figure 3, there are two components involved in
calculation of ¢c; the sweep rate (the rate at which the
interface effectively sweeps across the wave front) and the
signal rate (the rate at which information propagates
across the wave at the local sound speed).

D
Sweep: cs = @]
tan g
Signal: = \/cz — (D -us)? (8)

Then ¢c is found where cs=cw, i.e.

D
= (@ = arctan
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For low impedance materials, ¢¢ should equal ¢@q as
the interface reflects a rarefaction into the detonation
products, flattening any wave with @<@c to the point
where the causal angle is reached®.

From this it can be seen that whereas @q is dependent
on the material properties of the explosive and inert
components, ¢ is entirely a function of the explosive. By



applying Equation 9, ¢¢ for EDC37 is found to be
approximately 54.2°, and for EDC35, ¢c=49.0°.

Experiments were performed to measure @g from the

shape of a detonation wave emerging from line initiated
slabs of EDC37. A typical round can be seen as Figure 4.

Inert

FIGURE 4. TYPICAL BOUNDARY ANGLE
MEASUREMENT EXPERIMENT

120mm long x 75mm wide x 12.7mm thick slabs of
EDC37 were line initiated along one short side and the
resulting detonation wave emerging from the top measured
by a Total Internal Reflection (TIR) technique.

The 75mm width was chosen so that the central region
of explosive being measured was not perturbed by the
edges in the third dimension during the 120mm run. This
was considered long enough to produce a sufficiently
stable wave in the region of interest, given the narrow
width and the input wave meeting the inert close to the
causal angle.

With the exception of ABA7, the shape of the
detonation wave was recorded on a high speed electronic
streak camera with a writing rate of ~100mm/us. This
seventh round was diagnosed using a rotating mirror
camera, writing at ~30mm/us.

Two plates of inert material were placed in contact with
the explosive and ionisation probes allowed the phase
speed (DQ) of the wave to be found. The phase speed was
measured so that the recorded temporal wave shape could

be converted into a spatial shape for comparison with the
analytic solution.

Eight experiments were fired in total, the first being to
characterise the output from the line initiator only. Of the
remaining seven experiments - with the exception of the
final (corroborative) shot - all rounds had the same inert
on both sides of the charge. A list of inert materials used in
those seven rounds appears in Table 1.

TABLE 1. INERT MATERIALS FOR ASYMPTOTIC
BOUNDARY ANGLE EXPERIMENTS

Round | Inert Density (g/cc)

ABA1 | Air 0.0

ABA2 | Copper 8.9

ABA3 | Aluminium 2.7

ABA4 | Rubber / Aluminium’ 1.66/2.7

ABA5 | Tantalum 16.6

ABAG6 | Potting / Tantalum® 1.06/16.6
Side I - Aluminium 27

Al Side II - Copper 8.9

T The inert listed first was next to the explosive.

Using the TIR technique, light was continually
reflected off the bottom surface of the prism, in contact
with the explosive, until the detonation wave arrived,
disrupting the total internal reflection and extinguishing
the light to the camera, giving a record as seen in Figure 5.

FIGURE 5. TYPICAL STREAK TRACE

To accurately characterise the camera streak rate, a
pulsed laser was used to mark the film at regular (known)
intervals (Figure 5).

With the streak trace digitised, a quadratic fit was
applied to the spatial wave shape near each of the
explosive/inert interfaces. From this, an angle between the
wave front and the interface was found. When the phase
speeds were measured for the two different materials in
round seven, they were seen to agree with each other to
0.3%, giving confidence that the wave had stabilised.



In some cases, a bright-up was seen on the streak image
at the explosive/inert interface. This was caused by a flash
as air trapped between the explosive and inert was
compressed. The brightness of this and the high sensitivity
of the camera resulted in part of the desired image being
obscured. In these cases, extrapolation was performed to
obtain an edge angle. This method was not required for
ABA7, which gave good agreement to earlier results
obtained by wave front data extension, thus corroborating
this method. The results obtained from analysis of the
streak traces, are shown in Table 2. Each experiment gave
two results, one from either side.

TABLE 2. BOUNDARY ANGLES FOR EDC37

Round | AngleI(°) | Angle I (°)
ABAI | 40.56 49.55
ABA2 | 77.94 75.82
ABA3 | 78.79 76.99
ABA4 | 61.11 57.77
ABAS | 68.15 69.74
ABAG6 | 50.54 54.84
ABA7 | 78.61 (Al) | 78.22 (Cu)

The experimental error in each edge angle was
calculated from worst-case inaccuracies in the calculation
of the camera writing speed, the measurement of the phase
speed and the magnification of the image. The average
error in the edge angle due to the three factors together
was +0.12°,

The theoretical postulates for boundary angles were put
to the test for the impedance range tested in the
experiments. The results, together with the empirical
findings, are seen in Figure 6.
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FIGURE 6. THEORY AND EXPERIMENTAL
RESULTS FOR EDC37
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There is a striking miscorrelation between the predicted
and the experimentally observed edge angles. Whereas
WBL NRW theory states that the edge angle for inerts
with impedances above that of the explosive will increase
monotonically with acoustic impedance (i.e. the wave will
become less curved), early findings suggest a fall-off in
angle.

For inerts with impedances below that of the explosive,
although the trend is in the general direction of the causal
angle, it does not meet the value exactly, actually ending
up below it as pc—0.0.

One area that is to be investigated is the choice of
explosive EOS to be used when calculating the NRW
condition through shock refraction. Presently, a JWL
products EOS has been used (Figure 6). From shock
refraction, any reflected wave (if the point of interaction
remains on the interface) reflects into the material
immediately behind the shock wave. If a detonation wave
is thought of as having a finite thickness, with a leading
shock (LS) followed by a region of burning, to a point
where a sonic surface marks the back of the reaction zone,
then using a products EOS is highly simplified.

Treating the LS as a purely unreactive pressure spike, a
modified WL EOS with a parameter free extension®, was
tried to allow an unreacted state to be modelled.

p=f,e)m - (1~/1)2(eo+e*) (10)
v

where A is the reaction fraction: 0 for unreacted and 1 for
fully reacted (returning the standard JWL EOS), and
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This extension is based on a constant volume reaction
and an offset between the specific internal energies of the
unreacted explosive and its products. Although originally
designed for IHE work, it has been applied here as a first
attempt at an unreacted EOS for EDC37. However, neither
gave the observed trends in the data, but a better EOS and
wave refraction model for the von Neumann spike may be
advantageous for future analysis of the mechanisms
involved.

Another issue is the definition of ‘No Reflected Wave’.
What is really meant in the WBL model is a steady state
flow situation behind the leading shock. There could still
be a steady state evident in the following flow even with a
reflected wave, whereby the reflected wave has a
stabilising effect on the flow immediately behind the LS.




SPEED-CURVATURE RELATIONS

A D(K) relation, together with a value for Qa, defines
the steady-state shape and speed of a detonation wave in a
long cylinder or slab of explosive. Conversely,
measurements of the shape and speed allow a D)
relation to be deduced.

A series of rounds of different sizes have been fired for
EDC35, and a unique, non-linear D(K) relation deduced?.
There are some systematic residuals in the fit to the wave
shapes, and work is in progress to determine whether this
implies that the D(K) relation must be generalised to
include  acceleration  terms, e.g. expressed as a
relation D(D,K). A similar series of rounds was fired for
EDC37.

The key requirement for this type of experiment is for
the detonation wave to have become stable, for subsequent
comparison with the analytic solution. The diameter/width
of each experiment was chosen so as to be able to form a
D(K) over a reasonable curvature range. From this, the
length of the explosive needed to reach stability was
calculated. A theory was formulated stating that, for a
linear D(K) of the form in Equation 4, the length of
charge, L, needed to ensure a steady state was calculable
from the following expression:

242
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L=vy +rf (12)

where V is a stability factor (a dimensionless value related
to the time to asymptote to a steady wave shape), d is the
charge diameter/thickness, 4 is the linear D(K) parameter,
and 7fis a term used when the initiation is point rather
than plane (because of the finite run distance for the wave
to reach the boundary at the causal angle). It can be readily
seen from Equation 12 that for a given value of stability
factor v, the charge length increases as the square of the
diameter. A value of v>1 is felt adequate to define a stable
system.

Although past results on the HMX-based explosive
EDC29® were of qQuestionable stability, it gave an
indication as to the required length of the EDC37 charges
because of the similar detonation properties of the two
explosives.

The experimental design was effectively the same in all
cases. Cylinders and slabs of various lengths and
diameterstthicknesses were detonated at one end and left
to run to a steady state. For the EDC37 rounds, a trace of
the shape could be recorded using an electronic camera by
extinction of reflection of light from gold leaf on the end
of the explosive as the detonation wave arrived. A typical
EDC37 experiment can be seen as Figure 7.

The earlier EDC35 rounds used a self illumination
technique to reveal the wave shape on a rotating mirror
camera — running at approximately a third of the writing
speed of the electronic camera.

FIGURE 7. TYPICAL EDC37 WAVE SHAPE
MEASUREMENT EXPERIMENT

As in the boundary angle experiments, ionisation
probes were used to obtain the phase speed of the
detonation wave in the last few centimetres of the run.
These were placed perpendicular to the optical
measurement plane to minimise any perturbing effects.

EDC35 D(K) RELATION

Six experiments were fielded to establish a D(K) fit for
EDC35; a mixture of cylinders and slabs over a range of
diameters/thicknesses, as seen in Table 3. As a starting
point, a linear D(K) (Equation 4) was fitted to each
experiment. independently to see if there was any
correlation with geometry or scale. This was achieved by
applying a stable wave fitting software suite that returns
values for D¢j and A after a least squares fit of the
digitised experimental wave shape. The parameters
obtained are also shown in Table 3.

TABLE 3: EDC35 D(K) DETAILS

Width | Length | D¢j A
Round | Geometry (mm) (mm% (m{n/ps) (mm)
WBL21 | Cylinder |50.8 |762.0 |7.747 1.852
WBL1S | Cylinder | 10.0 ] 60.0 7.781 0.600
WBL17 | Slab 10.0 | 60.0 7.555 0.465
WBL18 | Slab 10.0 ] 60.0 7.614 ] 0.604
WBL9 | Slab 20.0 | 120.0 |7.745 0.633
PS26 Slab 25.0 [120.0 [7.809 1.560




When plotted on D-K axes (Figure 8), it became
evident that a single linear D(K) would not be sufficient to
describe the complete range of curvatures observed in the
various experiments. It also gave a clue as to the likely
shape of a single functional fit - if one could be found - i.e.
steep at low curvatures, flattening off as K increased.
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FIGURE 8. SERIES OF LINEAR D(K) RELATIONS
FOR EDC35

A form was found for this type of behaviour from J B
Bdzil’s ‘detonation shock dynamics’ fit to PBX95027:

* 1y

A
D = Dgj 1+F[(x7—rc)u—x7#]——w 13)
1+ Bk

where all parameters except D and k are explosive
dependent. It can be seen that when F=0.0, v=1.0 and
B=0.0, the linear relation is recovered with A*=A4/2. In this
equation, x is the independent variable and is connected to
the WBL curvature, K, by the relation K= x/2.

This analytic form was coupled to a Levenberg-
Mardquart n-parameter fitting routine, using a simple
numerical differentiation scheme to determine the
Jacobian matrix that comes from the method. This was
necessary because all the experimental data were in spatial
(7,z) form whereas the fit was to (D, k).

Along with the (r,z) data, diameter effect values were
required. This was in the form of a table of »Dp data
points for the rounds used. Two separate tables were
required: one for the cylinders and one for the slabs. To
reduce the sensitivity of the results to D0, a scaled average
of the phase speeds was used.

A single fit to all experiments using this non-linear
D(K) was successful, yielding the following parameters:
D¢j=7.818mm/us, F=0.207, p=0.7896, Kf=1.397mm",

A*=0.3324mm, v=1.7908, B=9.9133mm, w=0.7574. This
fit was obtained with a causal angle of 50°.

Confidence in the form of this non-linear function was
gained by forming a tabular D(X). This did away with any
artificial constraints placed on a functional form. A linear
speed-curvature relation was chosen as a starting point.
Then by applying all experimental data points
simultaneously and iteratively applying weighting to
regions of high and low sensitivity, a table of D(K) points
was found over the complete curvature range.

Figure 9 shows the correlation between the free-form
tabular D(K) and the non-linear fit (Equation 13) for
EDC35. (The kink in the tabular plot was always evident
in the fitting routine output, thus giving the impression
that it is a true reflection of the data behaviour.)
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FIGURE 9. TABULAR AND NON-LINEAR D(K)
FOR EDC35

The tabular speed-curvature relation obviously follows
a similar trend to that given by the non-linear D(K),
although as there are no tabular (i.e. experimental) values
for curvatures beyond ~0.5Smm, any D(K) response
gained from the analytic solution in this region must be
treated with caution.

ED D(K) RELATIO
Similar experiments were fielded for EDC37. To date,

only cylindrical charges have been fired, as detailed in
Table 4.




TABLE 4. EDC37 D(K) EXPERIMENT DETAIL

Round | Diameter (mm) | Length (mm)
ADK1 | 10.0 150.0
ADK2 [ 10.0 300.0
ADK3 | 20.0 600.0
ADK4 | 20.0 600.0

One linear D(K) fit was found that matched the average
of both the ADK3 & 4 wave shapes: D¢j=8.764mm/ps,
A=0.162mm.

From a calculation using the PSC code, this D(K) gave
a very good match for a simulation of the larger diameter
experiments in terms of wave shape (Figure 10) and phase
speed. The result from a standard Huygen’s construction
wave propagation method is also shown on the figure.
This serves to highlight the difference between the basic —
and often used — Huygen’s method and the WBL
correction when applied to EDC37 — a variation of
approximately 35ns at the edge of the charge in this case.
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FIGURE 10. EDC37 STEADY WAVE COMPARISON

When this D(K) was applied to calculations of ADK1
& 2, there was a distinct difference between the predicted
phase speed and that seen in the experiments. To correct
this, it is necessary to have a D(K) of steeper gradient in
this higher curvature regime; agreeing with the behaviour
of the non-linear D(K) used so successfully for EDC35.
These findings promote the idea that a non-linear form is
required for HMX-based EDC37 as well as for the [HE
EDC35.

To obtain a non-linear D(K) for EDC37 more wave
shapes are required. Work is in hand to fire additional

EDC37 ADK experiments, ranging from 10mm diameter x
150mm long to 30mm diameter x 1360mm long.

CONCLUSIONS AND FUTURE WORK

‘Level set’ methods or PSC schemes have been
employed successfully to calculate the propagation of
detonation waves in 2D and 3D. In 3D, their robustness
and simplicity makes them preferable to wave-tracking
(eikonal) methods.

Theoretical predictions and experimental measurements
have been done on the angles between detonation waves in
EDC37 and inert boundary materials. Preliminary results
show discrepancies between theoretical and experimental
findings, although more ideas have yet to be investigated.
Further work into the theoretical predictions and more
corroborative  experiments are  needed.  Similar
experiments on EDC35 are also planned for the future.

Non-linear speed-curvature relations have been found
for EDC35, with the same form looking promising for
EDC37.
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DISCUSSION

D.S. STEWART
University of Illinois
Urbana, Illinois, IL 61801

Since during the Symposium I have been repeatedly
asked by various friends and colleagues about the
differences between the WBL model and DSD, I thought
that I should make a comment. The WBL model referred
to is exactly the same as the DSD method. Indeed it should
be pointed out that in the summer of 1987 I spent six
weeks visiting Prof. John Clarke of the Cranfield Institute
of Technology, UK, where I worked on various aspects of
DSD, a theory that John Bdzil and I had been developing
together. My stay at Cranfield was supported by funds
from AWE, Aldermaston. During my stay at Cranfield a
briefing at Aldermaston was given by myself to
Aldermaston staff, which included B Lambourn. Indeed
copies of a joint talk that John and I had prepared was
provided and later a technical report, Stewart D.S.
“Detonation Shock Dynamics”, Cranfield Co A Report No
NFP/8707, August 1987, for Aldermaston Contract No
NNS/32A/1A91965, was written before my departure
from Cranfield. Later this same report appeared as Stewart
D.S. and Bdzil J.B. “A Lecture on Detonation Shock
Dynamics”, Mathematical Modelling in Combustion
Science, Lecture Notes in Physics, 299, pl7, 1988. The
paper and talk described all the main elements of DSS
(sic), sonic eigenvalue detonation, intrinsic co-ordinates,
intrinsic evolution equations, angle confinement boundary
conditions, initial detonation curvature and the possibility
of dead zones and extinction. In the last (not the current)
detonation symposium the WBL method was presented by
some of the present authors and there was an omission of
reference to our earlier paper and acknowledgement of the
Cranfield report and briefing at Aldermaston
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Depending on what is meant by “model” or “method”,
whilst similar, DSD and WBL are not exactly the same in
derivation, history or algorithms. The name “WBL” is
historical, based on the perceptions of those contributing
to the work in the particular group responsible for these
developments at Aldermaston.

The authors of the present paper have neither seen nor
referred to the works cited.

In our opinion, this is more an example of parallel and
convergent development, with interaction between groups
at AWE and LANL. From an AWE perspective, the WBL
model is based significantly on inclusive work dating back
to the 1960s.

This paper is a report on the application of the WBL
model to two explosives — for original references please
refer to “Application of Whitham’s Shock Dynamics
Theory to the Propagation of Divergent Detonation
Waves”, B. D. Lambourn & D. C. Swift, in the 9"
Detonation Symposium..



