DEeVELOPING SOFTWARE FOR A DISTRIBUTED, -
SYNCHRONOUS, REAL-TIME SYSTEM

Mr. E. Augustus Cooper, Jr,and Mr. A.Lee Philpott, Jr.

The submarine launched ballistic missile (SLBM) system has been a key
element in U.S. national defense for nearly 40 years, and the Naval Surface
Warfare Center, Dahlgren Division (NSWCDD) has been a major contributor to
its success from the beginning of the program. The SLBM Program, like all
defense programs, is evolving in an environment that includes budget constraints
and changes in world situation and system design. To meet the demands of the
21 century, the SLBM Fire-Control Life-Cycle Cost Control (. LCCC) Program is
changing the fire-control system (FCS) from a centralized, point-to-point system
of SLBM-developed hardware and software to a distributed, networked systent
containing a mixture of nondevelopmental items (NDI), commercial off-the-shelf
(COTS), and SLBM-developed hardware and software. This article describes the
architecture of the SLBM fire-control, real-time software and its evolution to a

distributed system.
INTRODUCTION

The SLBM system has been an important cog in U.S. national defense for nearly
40 years, and NSWCDD has been a major contributor to its success from the
beginning of the program.! NSWCDD has experienced the evolution of the SLBM
system from its initial capabilities to its current features and is part of a program that
will prepare the SLBM system for the 21* century. The SLBM Fire-Control LCCC
Program is changing the FCS from a centralized, point-to-point system of SLBM-
developed hardware and software to a distributed, networked system containing a
mixture of NDI, COTS, and SLBM-developed hardware and software.

This article describes the architecture of the SLBM fire-control prelaunch software
and its evolution from a centralized system to a distributed system. The fire-control
prelaunch software satisfies the same real-time requirements in both the centralized
and distributed systems; yet communication in the distributed system is designed
over a commercial operating system (OS) using standard internet protocols. This
article shows how the incorporation of a commercial OS supporting network access
can be used to solve a distributed, real-time problem.

Naval Surface Warfare Center, Dahlgren Division Technical Digest

DEVELOPING SOFTWARE FOR A DISTRIBUTED, SYNCHRONOUS, REAL-TIME SYSTEM

The FCS, as described in this article, has
been simplified in places for brevity and
simplicity. For example, redundant equipment
and multiple missile communications are
omitted.

ProBrem DEerINITION

The SLBM shipboard subsystems prepare
and launch missiles that contain a guidance
system, a flight-control system, and multiple
independently targeted reentry bodies. Once the
missile is launched, the guidance and flight-
control systems steer the missile so that it
releases the reentry bodies at the position and
velocity required to fly on a ballistic trajectory
to the desired impact points. The FCS
participates in the preparation of the missiles
before launch. It performs three major tasks:
system maintenance, targeting, and launch
sequence-related computations and control.
System maintenance is ongoing, non-real-time
work prior to the launch sequence. It is
intended to ensure that the system is opera-

~tional. Targeting tasks, which are also non-real-
time, include the updating of targeting
information in the mission data base by FCS
operators and the assignment of targets to
missiles. The prelaunch FCS software, under
operator control,

4+ Computes missile targeting and steering data.

4 Prepares the missile inertial guidance system
for flight through a process that includes the
continuous exchange of information among
the guidance system, the FCS, and other
weapon-system components.

4+ Coordinates the events associated with
launching the missile.

The FCS is being modernized to prepare it to
meet future requirements and to reduce life-
cycle costs by replacing expensive obsolete
components. The prelaunch software, however,
must satisfy the same communication require-
ments in the distributed system as it does in the
centralized one. Figure 1 depicts the major
components that participate in prelaunch
communication. The periodic communication

between these components is synchronous since
they all receive 1-pulse-per-second (1PPS)
signals that allow the coordination of the
exchange of information at timing marks
within the 1PPS interval. The guidance system,
for example, can require that the FCS transmit a
specific data list at a defined mark after the
1PPS signal. The 8PPS (one pulse per

0.125 seconds) and the 2PPS (one pulse every
half second) periods exist synchronously with
the 1PPS for the purpose of computing
prelaunch communication (see Figure 2).
Within each period, the FCS software
establishes timing marks as reference points for
performing computations and communication.

Several examples of communications
performed by the FCS are developed in order to
allow comparison of the centralized and
distributed architectures. These examples are
communication with the Operators Control
Panel (OCP), the submarine navigation system,
and the missile guidance system.

Example 1: OCP Communication

The OCP reads operator selections, provides
the status of various systems, and maintains
important system-state information. It receives
and displays this information using a collection
of color-coded actuator/indicators (buttons)
and lights. The OCP receives information from
the operator, FCS applications, and other
weapon-system elements. All operator input
and output are predefined. This allows the input
and output lists to be of a fixed length, and sent
and received synchronously on a specified
timing mark. System-state information is a set
of variables (state terms), some of which are
examined by applications to determine the
current state (state input terms), while some are
assigned values by applications to indicate their
state (state output terms). OCP communication
requires reading input associated with operator
selections, determining system state by
executing logical equations, and updating
operator display status using the output of these
equations.

o>

1997 issue—Strategic and Strike Warfare Weapons Systems

DEVELOPING SOFTWARE FOR A DISTRIBUTED, SYNCHRONOUS, ReaL-TiME SYSTEM

7

Navigation
System «—1FPs
Command
Sequencer
Ja—1PPS System
& Guidance
. System T&-1PPS
! Fire Control ,
OCP &P System Fhight]
Compuier Control

System

<>
Battery

Launcher

Figure 1-—Major Components of a Prelaunch Sequence

Example 2: Navigation Communication

Navigation communication requires the
reading of information from the ship’s
navigation system (e.g., position and velocity)
and conversion to FCS formats. This is done at.
a specified interval.

Example 3: Guidance Communication

There are many types of communication
between fire control and guidance. This article
specifically considers two: communication of
position data to guidance and status
communication from guidance. These are
performed at a specified interval and require
computing guidance position data based on
navigation inputs, writing these data to
guidance, reading status data from guidance,
and computing guidance status as required for
the OCP logical equations.

CENTRALIZED AND DisTRIBUTED FCS

In a centralized system, the FCS computer is
connected to the other systems by point-to-
point connections, as shown in Figure 3. All of
the launch-sequence-related, targeting, and
system-maintenance software executes on the
FCS computer. The current computer, which is
of 1970s vintage, was designed specifically for
the FCS and includes one megabyte of main
memory; 32-bit, fixed-length instructions;
16-bit virtual addresses, specialized real-number
support for computations, several Program-
mable Interrupt Generators (PIG),and a
programmable Direct Memory Access (DMA)
input/output controller for interfacing the FCS
to other systems.

In a distributed system, the FCS software
executes in multiple computational nodes
connected by a network (see Figure 4). The FCS

Naval Surface Warfare Center, Dahigren Division Technical Digest

DevELOPING SOFTWARE FOR A DisTaiBUTED, SYNCHRONOUS, REAL-TIME SYSTEM

in this figure includes the OCP for controlling
the launch sequence; the Display and Control
Subsystem (DCSS), the Enhanced Guidance
Interface Subsystem (EGISS), the Navigation/
Missile Interface Subsystem (NMISS), and the
Data Entry Subsystem (DESS) for controlling
targeting and system maintenance software; and
the Fiber-Distributed Data Interface (FDDI)
network. What was previously computed in one
computer is now computed in a networked
environment. The primary computing nodes
for the three examples are the DCSS, the EGISS,
and the NMISS. Each node is Versa Module
Eurocard (VME)-based and has components as
shown in Figure 5. The fire-control software
executes in the commercial PowerPC module;
the commercial FDDI module provides access

way. Each port can have a “chain” of operations
ongoing, where each operation in the chain is
an output of data or commands, an input of
data or commands, or a skip of the next
operation. Beginning the chain requires a single
Central Processing Unit (CPU) instruction to
start I/O with the address of the chain. Starting
I/0 requires so little overhead from the CPU
that it can be performed at the interrupt level.
Thus, the OS of the centralized FCS establishes
a system-wide set of timing marks, each with a
corresponding connect point for an interrupt
handler. This allows applications to connect
interrupt handlers to the timing marks. The
timing marks are established by using a PIG in
conjunction with the 1PPS signal. When a 1PPS
interrupt is received, a PIG is set up to generate

< 1second P
| I l l I
8PPS 8PPS 8PPS 8PPS 8PPS 8PPS
2PPS
1PPS 8PPS 1PPS
2PPS 2PPS
8PPS 8PPS

Figure 2—Timing Marks

to the network; and the specialized Input/
Output (I/0) module provides access to SLBM
components, such as the guidance and naviga-
tion systems, and the OCP,

Both the centralized and distributed FCS
establish the timing marks discussed previously;
however, each does it differently. The reason for
the difference can be discovered by examining
the communication of each FCS architecture.

Communication in the centralized FCS is
performed by software executing in the one
computer using its DMA controller. The DMA
is programmable in a simplistic, but powerful

an interrupt—for example, 65 milliseconds later
and every 125 milliseconds thereafter. This
sequence would result in interrupts at the 65-,
190-, 315-, 440-, 565-, 690-, 815-, and
940-millisecond marks. At each of these points,
the OS would call the connected interrupt
handler to consider sending position data to the
guidance system. The prelaunch software builds
the chain prior to the timing mark, and the
interrupt handler starts the I/O at the proper
time.

Communication in the distributed FCS is
performed by software executing in the various
nodes on the network. This communication is a

gD

1997 Issue—Strategic and Strike Warfare Weapons Systems

| N B

DEVELOPING SOETWARE FOR A DiSTRIBUTED, SYNCHRONOUS, REAL-TIME SYSTEM

Navigation
System & IPPS
A
Navigation
Interface
Subsystem
Prelaunch Work ommand
Sequencer|
7 lag—rps System
j— Guidance
< o—1PPS
Fire Control
System Missile Flight ‘
Computer 1 Interface Control

and Je{—p>
display

Subsystem

Targeting and Launcher
System Maintenance Interface s
Work Subsystem Launcher

Figure 3—Centralized SLBM System

combination of network I/O and I/O using
specialized ports. The commercial OS has
changed the nature of I/O. The Berkeley
Networking functions,? as well as the manner in
which the specialized I/O device drivers are
added to the commercial OS, require tasks (or
processes) to initiate the I/O. It cannot be
initiated at the interrupt level. Thus, the OS of
the distributed FCS must establish a mechanism
for providing timing marks to tasks. Addition-
ally, it is not known which set of timing marks
each node requires, and as a consequence, a
more general mechanism is established for
defining the timing marks.

For example, when a 1PPS interrupt is
received in a node, a PIG is set up to generate an
interrupt every 125 milliseconds thereafter (that

is, at the 0-, 125-, 250~, 375-, 500-, 625-, 750-,
and 875-millisecond marks). These interrupts
are handled by the OS and are not passed on to
application interrupt handlers. Instead, the OS
allows tasks to be awakened at any millisecond
marks within a 125-millisecond interval. The
OS in a node maintains a data structure that
describes all timing mark events established
within that node. When the 125-millisecond
interrupt occurs, the OS consults the data
structure to determine whether any task must
be awakened in the interval and, if so, when. For
example, assume two tasks are to be awakened
in a given interval—the first at 40 milliseconds
after the interrupt and the second at

82 milliseconds. The OS establishes a second
PIG to count 40 milliseconds and generate an
interrupt. After the interrupt is handled by the

B>

Naval Surface Warfare Center, Dahigren Division Technical Digest

DEVELOPING SOFTWARE FOR A DISTRIBUTED, SYNCHRONOUS, REAL-TIME SYSTEM

O8S, it establishes the same second PIG to count
42 seconds, and then performs the processing
for the second task.

CoMPARISON OF COMMUNICATION
ExAMPLES

Four examples of FCS communications were
selected for specific discussion. They serve to
further highlight the differences between the
centralized and distributed FCS architectures.
The OCP and navigation examples address the
provision of system services; the guidance
example considers continuous communication
with a system outside of fire control.

Targeting and
System Maintenance
Work

Example 1: OCP Communication

In both the centralized and distributed FCS,
the OS provides OCP communication and
system-state computation as a service. In the
centralized FCS, OCP communication provides
one of the system timing marks. For example,
the 1PPS and a PIG are used, as previously
described, to establish a timing mark. The OS
uses the DMA to write and read values to and
from the OCP. The initial DMA program
outputs a default set of values for the OCP and
reads the results from the OCP. This read, which
should be complete by the timing mark, is
followed by the execution (by the OS) of the
system-state logical equations using the input
data to generate OCP output data and the

Entry +af—1PPS
Subsystem

Prelaunch Work

Display and
Control 1
Spbsystem

1PPS

FDDI
Network

Navigation Nav/Missile
System Interface
Subsystem

 Command
1PPS Sequencer|
* System
ey Guidance |
Guidance
Interface System ~k—1pps
Subsyst:
ubsystem e
Control

Launcher

Interface el
Subsystem

Launcher

Figure 4—Distributed SLBM System

1997 Issue—Steategic and Strike Warfare Weapons Systems

I R S R

DEVELOPING SOFTWARE FOR A DISTRIBUTED, SYNCHRONOUS, REAL-TIME SYSTEM

o>

[—-4--,—-—-
K}
3 |3 |3
og"’
= |2 |2
ol o
2 18] |2

VME Enclosure

Figure 5—Fire Control Computing Node

restarting of the DMA program. This process is
repeated at the remaining millisecond marks.

Since OCP communication involves the
computation of system-state information, the
OS provides two interrupt-level connect points
that allow applications immediate access to the
system-state information and precise timing
marks. At the first connect point, the OS calls an
application interrupt handler just prior to the
computation of the system-state logical equa-
tions. The OS calls an application interrupt
handler, at the second connect point, just after
the system-state logical equation computation.
The system-state information is contained in
memory that is accessible to applications.

In the distributed FCS, the OCP communi-
cation provides one of the system timing marks,
but it does it in a different manner. OCP
communication and system-state computation
are done in the DCSS node; applications execute
in other nodes. Targeting applications, for
example, execute in a DESS node, and the
launch-sequence computations and control
execute in the EGISS nodes. These applicatjons
require access to fire-control information. For
example, the prelaunch software needs to know
when a launch has been commanded and
requires-the ability to change system status
information when elements (such as guidance)
are bad or not available.

Fire-control information is computed in the
DCSS node and broadcast on the FDDI net-
work to all other nodes. Each node computes its
own system status information and sends it on
the FDDI network to the DCSS node, Thus, the
OCP communication timing marks provided in
the distributed FCS are those used when the
fire-control information is received in a node.
The OS in a given node uses its own timing
mark mechanisms to establish the mark at
which broadcast fire-control information is
required in the node. An OS task is awakened at
that point to perform a nonblocking network
read to receive the broadcast fire-control
information. The OS task then calls an
application connect handler in the context of
the task that performed the read, not as an
interrupt.

J

Example 2: Navigation Communication

In both the centralized and distributed FCS,
the OS provides the navigation communication
and data computation as a service. They are
provided in a manner similar to that of OCP
communication and fire-control computation.

Navigation communication provides one of
the system timing marks in the centralized
system. The 1PPS interrupt and a PIG are used
to establish two timing marks (different from

Naval Surface Warfare Center, Dahfgren Division Technical Digest

DEVELOPING SOFTWARE FOR A DISTRIBUTED, SYNCHRONOUS, REAL-TIME SYSTEM

those provided by OCP communication). The
OS interrupt handler, operating at these times,
reads navigation data, converts it to fire-contrel
format, and provides a connect point that
allows an application interrupt handler to be
called. The navigation data are contained in
memory that is accessible to applications. The
prelaunch sequence application uses this
connect point to be notified when navigation
data are available.

In the distributed FCS, navigation
communication again provides oneof the
system timing marks. Navigation communica-
tion and data computation are performed in the
NMISS node. The NMISS software broadcasts
navigation data on the FDDI network to make
it available to other nodes. Analogously to the
QCP case, the timing marks provided by the
distributed FCS are those used when the data
are received in a node. The OS in a particular
node uses it own timing mark mechanisms to
establish the mark at which broadcast
navigation data are needed within the node. A
nonblocking network-read OS task is awakened
at the appropriate time.

Example 3: Guidance Communication

This example shows how the prelaunch
application software uses the timing marks
provided by the OS to perform the required
communication with the guidance system. The
discussion will consider the communication of
position data to guidance and the receipt of
status data from guidance. These are only two
of many guidance communications; however,
all-are handled similarly.

/ Position data are continuously provided to
guidance throughout the prelaunch sequence.
The data generated in the navigation system are
read into the FCS, converted into guidance
formats, and written to the guidance system.
Guidance requires that this be performed in an
interval following the 2PPS mark established in
navigation communications. In the centralized
FCS; the-prelaunch software and the OS

software, which reads from the navigation
system, are in the same computer. In the
distributed system, the prelaunch software is in
the EGISS node, and navigation data are read by
the OS in the NMISS node. In spite of this, the
prelaunch software has the same design in both /
the centralized and distributed FCS. The
difference is the level at which the guidance
position processing connect point is called. In
the centralized system, it is called at the
interrupt level; in the distributed FCS, it is
called at the task level.

Collecting guidance status also occurs
continuously throughout the prelaunch
sequence, The prelaunch software uses the QCP
connect point in the EGISS to perform all
guidance communication except for position
data. Guidance status communication occurs at
the OCP connect point prior to the end of the
2PPS interval.

SuMMARY

The SLBM FCS prelaunch real-time software
provides position data to missile guidance
systems, computes missile mission parameters
and provides them to the guidance systems, and
coordinates the final events in the launch
sequence. The prelaunch real-time software
executes in a synchronous system that uses a
1PPS signal to allow subsystems to exchange
information on coordinated timing marks.

The prelaunch software was originally
designed to execute in an FCS with a centralized
architecture. The OS in the centralized system
provides two synchronous timing marks using
interrupt-level connect points. One of these
marks is established by the availability of
navigation data, the other by the availability of
OCP and fire-control information, The
prelaunch software uses these timing marks in
its guidance communications design. A key
element of this design is that guidance
communication is performed by DMA access,
thus allowing the prelaunch interrupt connect

7>

1997 Issue—Strategic and Strike Warfare Weapons Systems

DEVELOPING SOFTWARE FOR A DISTRIBUTED, SYNCHRONOUS, REAL-TIME SYSTEM

points to start I/O and check it for completion
at a subsequent connect point.

As the prelaunch software is moved to a
distributed FCS, similar design concepts are
being developed in the context of a commercial
OS with network access. The prelaunch software
is not distributed across the nodes of the FCS;
however, the supporting infrastructure is. The
same two timing marks available in the
centralized FCS are present in the node where
_ the prelaunch software executes. The navigation
data and fire-control information are available
in that node when they are received by
broadcast transmission on the FDDI network
from the NMISS and DCSS, respectively. The
timing-mark connect points are provided
within the context of the OS tasks that receive
the broadcast information.

The shift from interrupt-level timing marks
to task-level timing marks is necessary because
the commercial OS requires network access
through task context. Guidance communication
must also be performed at the task level. In
order to support task-level timing marks that
may be different in the various FCS nodes, a
generalized timing mark package has been
developed.

REFERENCES

1. Gates, Robert V., “Strategic Systems Fire
Control,” Naval Surface Warfare Center,
Dahlgren Division Technical Digest, 1995.

2. Stevens, W. Richard, UNIX Network
Programming, Prentice Hall, Englewood
Cliffs, New Jersey, 1990.

Naval Surface Warfare Center, Dahlgren Division Technical Digest

